Last updated on July 5th, 2025
A method where the polynomials are subtracted by converting signs to opposites is known as subtracting polynomials. Depending on the expressions, it is similar to addition of polynomials. The positive signs must be changed to negatives and vice versa.
Subtraction of polynomials is done using two methods, vertical and horizontal. For simplification, like terms in a polynomial are separated and aligned together. Columns help in matching correct terms during complicated subtractions and this is especially done in the vertical method.
Two rules while subtracting polynomials are:
Polinomial dikurangkan menggunakan metode vertikal atau metode horizontal. Dalam metode horizontal pengurangan polinomial, tanda-tanda suku yang berada dalam tanda kurung pada ekspresi kedua berubah. Ini menyederhanakan pengurangan sehingga dapat diselesaikan sebagai penjumlahan. Dalam metode vertikal, polinomial disusun dalam kolom satu di atas yang lain berdasarkan suku sejenis. Tanda-tanda kemudian diubah sesuai, dan pengurangan dilanjutkan.
Mari kita pahami langkah-langkah yang digunakan dalam kedua metode:
Metode 1: Metode horizontal
Mari kita terapkan langkah-langkah ini pada contoh:
Soal: Kurangkan 2a + 7b -3c dari 6a - 4b + 5c
Karena polinomial sudah dalam bentuk standar, mari kita mulai dengan langkah 2, yaitu menempatkannya secara horizontal.
(6a - 4b + 5c ) - ( 2a + 7b - 3c )
Langkah 3: Ubah tanda
6a - 4b + 5c - 2a - 7b + 3c
Langkah 4: Susun suku sejenis bersama-sama
6a - 2a - 4b - 7b + 5c + 3c
Langkah 5: Selesaikan ekspresi
4a - 11b + 8c
Oleh karena itu, setelah mengurangkan 2a + 7b -3c dari 6a - 4b + 5c, kita mendapat 4a - 11b + 8c.
Metode 2: Metode vertikal
Misalnya: Kurangkan 6 + 3x2 - 5x dari -2x + 4 - x2
Langkah 1: Susun polinomial dalam bentuk standar
Polinomial pertama : -2x + 4 - x² → -x² - 2x + 4
Polinomial kedua: 6 + 3x2 - 5x → 3x² - 5x + 6
Langkah 2: Susun suku sejenis secara vertikal
-x2 - 2x + 4
-(3x2 - 5x + 6)
Langkah 3: Karena kedua polinomial memiliki suku untuk x2, kita tidak perlu menggunakan 0 sebagai koefisien dalam kasus ini.
Langkah 4: Ubah tanda
-x2 - 2x + 4
-3x2 + 5x - 6
Langkah 5: Hitung
(-x² - 3x²) = -4x²
(-2x + 5x) = 3x
(4 - 6) = -2
Oleh karena itu, mengurangkan polinomial yang diberikan secara vertikal, kita mendapat jawaban: -4x2 + 3x - 2
We subtract polynomials to simplify and solve expressions. Subtracting polynomials can also be used to solve real-life situations like:
Calculating usable floor area in architecture
Polynomial subtraction is used to calculate areas. Architects find the usable floor area of staircases, columns, etc., to plan a building's layout accordingly.
Calculating net profit in a business
Business models like revenue and cost have changing values that are modelled as polynomials. The cost model can be subtracted from revenue to find net profit. This process requires polynomial subtraction.
Relative velocity in physics
In motion-related problems, relative velocity is found using polynomial subtraction of velocities of two objects.
Calculating drug concentration in a patient’s body
Pharmacologists use polynomial subtraction to find portions of drugs that have been metabolized in a patient's body over time. This is required for safe drug dosages at regular intervals.
Stock tracking in inventory management
The number of items in stock and sold is expressed as polynomials. Retailers use polynomial subtraction to determine stock levels and make restocking decisions.
Performing algebraic operations with polynomials can be a little confusing in the beginning. Here are a few common errors related to subtraction of polynomials and how they can be avoided.
Subtract (7x + 4) - (3x - 2)
4x + 6
First, we distribute the negative sign and remove the brackets.
7x + 4 − 3x + 2
Then, we combine the like terms
= (7x − 3x) + (4 + 2)
So, (7x + 4) - (3x - 2) = 4x + 6
Subtract (6 + 3x² − 5x) from (−2x + 4 − x²)
−4x2 + 3x − 2
Step 1: Arrange the polynomials in their standard form
−x2 − 2x + 4
3x2 − 5x + 6
Step 2: subtract
(−x2 − 2x + 4) − (3x2 − 5x + 6)
Change signs: −x2 −2x + 4 − 3x2 + 5x − 6
Combine like terms: (−x2 − 3x2) + (−2x + 5x) + (4 − 6) = −4x2 + 3x − 2
Subtract (5x^3 + 2x²− 4x + 6) − (3x^3 − x² + x−1)
2x3 + 3x2 − 5x + 7
Distribute the minus sign and remove brackets:
(5x3 + 2x2 − 4x + 6) − (3x3 + x2 − x + 1)
Group like terms:
(5x3 -3x3) + (2x2 + x2) + (-4 - x) + (6 + 1)
Simplify all terms:
2x3 + 3x2 - 5x + 7
Subtract (8x^3 + 2 − x) − (5x^3 + 4x)
3x3 − 5x + 2
Since neither polynomial has an x2 term, use 0 as the coefficient for the missing term i.e., x2:
(8x3 − x + 0x2 + 2) − (5x3 + 4x + 0x2 + 0)
Distribute minus: 8x3 − x + 2 − 5x3 − 4x
Combine the terms: (8x3 − 5x3) + (−x − 4x) + 2 = 3x3 − 5x + 2
A company's revenue and cost polynomials are: Revenue: R(x) = 4x² + 10x + 100 Cost: C(x) = 3x² + 5x + 60 Find the profit polynomial P(x) = R(x) - C(x)
P(x) = x2 + 5x + 40
P(x)=(4x2 + 10x + 100) − (3x2 + 5x + 60)
Change signs: 4x2 + 10x + 100 − 3x2 − 5x − 60
Combine like terms: x2 + 5x + 40
Jaskaran Singh Saluja is a math wizard with nearly three years of experience as a math teacher. His expertise is in algebra, so he can make algebra classes interesting by turning tricky equations into simple puzzles.
: He loves to play the quiz with kids through algebra to make kids love it.